Meta-heuristic algorithms as tools for hydrological science
نویسندگان
چکیده
In this paper, meta-heuristic optimization techniques are introduced and their applications to water resources engineering, particularly in hydrological science are introduced. In recent years, meta-heuristic optimization techniques have been introduced that can overcome the problems inherent in iterative simulations. These methods are able to find good solutions and require limited computation time and memory use without requiring complex derivatives. Simulation-based meta-heuristic methods such as Genetic algorithms (GAs) and Harmony Search (HS) have powerful searching abilities, which can occasionally overcome the several drawbacks of traditional mathematical methods. For example, HS algorithms can be conceptualized from a musical performance process and used to achieve better harmony; such optimization algorithms seek a near global optimum determined by the value of an objective function, providing a more robust determination of musical performance than can be achieved through typical aesthetic estimation. In this paper, meta-heuristic algorithms and their applications (focus on GAs and HS) in hydrological science are discussed by subject, including a review of existing literature in the field. Then, recent trends in optimization are presented and a relatively new technique such as Smallest Small World Cellular Harmony Search (SSWCHS) is briefly introduced, with a summary of promising results obtained in previous studies. As a result, previous studies have demonstrated that meta-heuristic algorithms are effective tools for the development of hydrological models and the management of water resources.
منابع مشابه
Designing a Meta-Heuristic Algorithm Based on a Simple Seeking Logic
Nowadays, in majority of academic contexts, it has been tried to consider the highest possible level of similarities to the real world. Hence, most of the problems have complicated structures. Traditional methods for solving almost all of the mathematical and optimization problems are inefficient. As a result, meta-heuristic algorithms have been employed increasingly during recent years. In thi...
متن کاملPortfolio Optimization by Means of Meta Heuristic Algorithms
Investment decision making is one of the key issues in financial management. Selecting the appropriate tools and techniques that can make optimal portfolio is one of the main objectives of the investment world. This study tries to optimize the decision making in stock selection or the optimization of the portfolio by means of the artificial colony of honey bee algorithm. To determine the effect...
متن کاملOPTIMAL SIZE AND GEOMETRY DESIGN OF TRUSS STRUCTURES UTILIZING SEVEN META-HEURISTIC ALGORITHMS: A COMPARATIVE STUDY
Meta-heuristic algorithms are applied in optimization problems in a variety of fields, including engineering, economics, and computer science. In this paper, seven population-based meta-heuristic algorithms are employed for size and geometry optimization of truss structures. These algorithms consist of the Artificial Bee Colony algorithm, Cyclical Parthenogenesis Algorithm, Cuckoo Search algori...
متن کاملModeling the Time Windows Vehicle Routing Problem in Cross-Docking Strategy Using Two Meta-Heuristic Algorithms
In cross docking strategy, arrived products are immediately classified, sorted and organized with respect to their destination. Among all the problems related to this strategy, the vehicle routing problem (VRP) is very important and of special attention in modern technology. This paper addresses the particular type of VRP, called VRPCDTW, considering a time limitation for each customer/retai...
متن کاملA Novel Adapted Multi-objective Meta-heuristic Algorithm for a Flexible Bi-objective Scheduling Problem Based on Physics Theory
We relax some assumptions of the traditional scheduling problem and suggest an adapted meta-heuristic algorithm to optimize efficient utilization of resources and quick response to demands simultaneously. We intend to bridge the existing gap between theory and real industrial scheduling assumptions (e.g., hot metal rolling industry, chemical and pharmaceutical industries). We adapt and evalua...
متن کامل